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Application to Autism Spectrum Disorder (ASD)

- ASD: developmental disorder that affects communication and
behavior

- Resting state: Feasibility study of Autism Biomarkers Consortium for
Clinical Trials (ABC-CT) (McPartland et al. 2020; Levin et al. 2020)
- Goal: study the day-to-day test-retest reliability of power spectral
density (PSD)



Resting state EEG: Day-to-day test-retest reliability of PSD

- Study cohort: 47 children aged 5-11 years old (25 TD, 22 ASD)
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- Multilevel: Participants were shown screensaver-like videos on two
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separate days, a median of 6 days apart

- Region-referenced: 18 electrodes

- Functional: PSD

Day 2




EEG data

- Generated data viewed as functional objects collected across the
scalp across varying experimental conditions within a single
longitudinal visit or across multiple visits

- Common analysis of EEG reduces the data complexity by collapsing
one of the dimensions
- Functional: average power within a specified frequency band
- Regional: analysis in pre-determined scalp region (or a scalp average)



Current methods for high-dimensional functional data

- Hybrid PCA (HPCA) for region-referenced EEG data: uses the concept
of weak separability for dimension reduction along regional and
functional dimensions (Scheffler et al. 2020)

- Weak separability (weaker then strong seperability): assumes the
direction of variation along one of the dimensions stays constant
across slices of the other dimension

- Uses both vector and functional PCA

- Multilevel FPCA (M-FPCA) for multilevel functional data: functional
ANOVA model (Di et al. 2009)
- Decomposes total variation in functional data into between- and
within-subjects variation
- Assumes repetitions are exchangeable



M-HPCA algorithm for multilevel region-referenced functional

EEG data

- Borrows ideas from HPCA and M-FPCA

- Decomposes total variation into between- (Ky g) and within-subjects
(Kg,w) variation

- Utilizes weak seperability on Ky g and Ky w for dimension reduction
via product components

- Involves only one-dimensional PCA and FPCA (along regional and
functional dimensions)



Proposed M-HPCA Algorithm

- Scores and variance components targeted within a mixed effects
modeling framework

- Major computational challenge: Standard packages fail to scale up
to the size of data considered

- M-HPCA addresses the computational challenge by coupling
representation of the high-dimensional covariance matrices as
weighted sums of lower dimensional building blocks, under the weak
separability assumption, with an efficient minorization-maximization
(MM) algorithm



* Yqij(r, t) denotes the functional observation for subjecti, i =1,...,ng,
from group d, d =1,...,D, for repetition j,j =1,...,J, in region r,
r=1,...,R attimet, t e 7 and is modeled as

Yaij(r,t) = p(t) 4 nai(r,t) + Zai(r, t) + Wa(r, t) + €qi(r, 1)

- u(t): overall mean function

- ngi(r, t): group-region-repetition-specific shift from the overall mean
- Zgi(r, t): subject-region-specific deviation

- Wyi(r, t): subject-region-repetition deviation

- egij(r, t): independent measurement error



Covariances

- Total covariance:
Ka total{ (1, t), (', ')} = cov{Yaj(r, t), Yai(r', t')}
- Between-subject covariance:

Kag{(r,t), (r',t")} = cov{Yyi;,(r, t), Yai, (r', t')} = cov{Zyi(r, 1), Zai(r', ')}

- Within-subject covariance

Kd,W{(ra t)’ (I’/, tl)} = Kd,Total{(r7 t)> (I’/, t/)} B KdyB{(r’ t)’ (I’/, t/)}
= COV{Wd,’}'(f, t)7 Wdij(rla t/)}



Marginal covariances

- Functional marginal between and within covariance surfaces
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- Regional marginal between and within covariance matrices
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M-HPCA decomposition

- Utilizing the marginal eigenfunctions and eigenvectors
Yaii(r, t) = p(t) + ngi(r, t) + Zai(r, t) + Waii(r, t) + eqii(r, t)
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* Caike = (Zai(r, 1), de( )<l5 (1)), Ei.pm = (Wi (7, 1), Vdp( )%m( )
- Number of product components: level 1(G = KL), level 2 (H = PM)

* var((aig) = Af{q), var(&in) = Ay,



Mixed effects modeling to target scores + variance components

Yoi = ZoiCai + Wai€gi + €gi fori=1,...,ng

Cyi ~ MUN (0,/\9)) , &4 ~ MUN (o, I ® A<;>) €4 ~ MUN (0, 02Irz; )

* Yg4i ~ MVN (07 zd,'), where X, = Zd,~l\fj1)25,~ + Wi (Ij’- & /\((jz)) W;,F, < O’é,TRJ,

- Log-likelihood: £ (Ag”,/\g”,ag) = —15 logdet Xy + Y5ES Vi
- Major computational challenge: X is TRJ; x TR/

- ABC-CT feasibility-study: T=108, R=18,) =2 = TR/ > 3800
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- Minorizing function of log-likelihood:
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- Minorizing function of log-likelihood:
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- Minorizing function of log-likelihood:
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- Minorizing function of log-likelihood:

Ng
Zfd), (/\((;)7 AEjZ)a U§|A((j1)(C)7 /\((jz)(c)7 05(5))
=1

_Z—[ (5257920 + AL
thr{Wd/z ()Wd) (I),(X)/\( )(©) )}Jré- (, ®A—W(2 )fd,

+ } +q©

Vi

[Measurement error variance component]




- Minorizing function of log-likelihood:
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- Variance components separated = derivatives are easy!



MM algorithm and computational savings

- Minorization function is much easier to maximize with respect to the
variance components, due to the additive structure

- Taking advantage of weak separability, the high-dimensional
covariance matrices are represented as weighted sums of lower
dimensional building blocks

- Instead of inverting TRJ; x TRJ; covariance matrix, X4;, we only invert
matrices of size G x Gand H x H



M-HPCA ICC and inference via parametric bootstrap

- Compare the variability explained at each level of the data (subject
vs. repetition) across the functional and regional dimensions
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- High M-HPCA ICC = more of the total variation is explained by
heterogeneity at the subject level, implying repeatedly observed
region-referenced functional data are similar within subjects

- Inference via parametric bootstrap is proposed using estimated
variance components and the low dimensional representation
provided by M-HPCA
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Day-to-day test-retest reliability of PSD

- Study cohort: 47 children aged 5-11 years old (25 TD, 22 ASD)
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- Multilevel: Participants were shown screensaver-like videos on two
separate days, a median of 6 days apart

- Region-referenced: 18 electrodes

- Functional: PSD



Marginal eigenvectors

(a) First Participant-Level Eigenvectors (b) First Day-Level Eigenvectors
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- Leading eigenvector explains most of the variation across both
groups and levels and signals constant variation across the scalp
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Marginal eigenfunctions
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Marginal eigenfunctions

- Leading participant-level eigenfunctions: most of the variation
across subjects is observed in the alpha peak amplitude in both
groups

- Second leading participant-level eigenfunction signals variation in
location of the dominant peak across subjects (TD: low and high
alpha, ASD: high alpha to beta)

- Leading day-level eigenfunctions: variation across days is in the
dominant peak location within alpha to beta bands in ASD, within
theta to alpha in TD

- Second leading day-level eigenfunctions signal peak alpha
amplitude variation in both groups



M-HPCA ICC
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- Estimated to be 0.673 [95% CI (0.626, 0.793)] for ASD and 0.656 for TD
[95% CI (0.639, 0.776)]

- Signals moderate agreement in within subject day-to-day PSD, where
most of the variation is explained at the subject level

- Results consistent with findings of Levin et al. (2020) who reported
moderate aggreement for scalp averaged PSDs across days within
subjects
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- M-HPCA models EEG data in its full complexity, including the
functional and regional features as well as the repeated
observations over experimental conditions or visits

- Both time and the frequency domains are targeted under the
umbrella of multilevel region-referenced functional data

- Computationally efficient MM algorithm that is specifically designed
to take advantage of the lower dimensional representation provided
by M-HPCA

- Major savings in computational time as the number of product
components increase: 100 fold savings over Ime4 at 16 product
components

20



Thank you!

R package available at github.com/emjcampos/mhpca

Manuscript available at doi/10.1002/sim.9445


https://github.com/emjcampos/mhpca
https://onlinelibrary.wiley.com/doi/10.1002/sim.9445
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Covariances

- Total covariance:
Ka total{ (1, t), (', ')} = cov{Yaj(r, t), Yai(r', t')}
- Between-subject covariance:

Kag{(r,t), (r',t")} = cov{Yyi;,(r, t), Yai, (r', t')} = cov{Zyi(r, 1), Zai(r', ')}

- Within-subject covariance

Kd,W{(ra t)’ (I’/, tl)} = Kd,Total{(r7 t)> (I’/, t/)} B KdyB{(r’ t)’ (I’/, t/)}
= COV{Wd,’}'(f, t)7 Wdij(rla t/)}



Marginal covariances

- Functional marginal between and within covariance surfaces
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- Regional marginal between and within covariance matrices
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