Multilevel hybrid principal components analysis for region-referenced functional EEG data

Emilie Campos
Department of Biostatistics
University of California, Los Angeles

Joint work with:
Aaron Scheffler, Donatello Telesca, Catherine Sugar, Charlotte DiStefano, Shafali Jeste, April Levin, Adam Naples, Sara J. Webb, James C. McPartland, Damla Şentürk

Application to Autism Spectrum Disorder (ASD)

- ASD: developmental disorder that affects communication and behavior
- Resting state: Feasibility study of Autism Biomarkers Consortium for Clinical Trials (ABC-CT) (McPartland et al. 2020; Levin et al. 2020)
- Goal: study the day-to-day test-retest reliability of power spectral density (PSD)

Resting state EEG: Day-to-day test-retest reliability of PSD

- Study cohort: 47 children aged 5-11 years old (25 TD, 22 ASD)

- Multilevel: Participants were shown screensaver-like videos on two separate days, a median of 6 days apart
- Region-referenced: 18 electrodes
- Functional: PSD

Multilevel region-referenced functional EEG data

- Generated data viewed as functional objects collected across the scalp across varying experimental conditions within a single longitudinal visit or across multiple visits
- Common analysis of EEG reduces the data complexity by collapsing one of the dimensions
- Functional: average power within a specified frequency band
- Regional: analysis in pre-determined scalp region (or a scalp average)

Current methods for high-dimensional functional data

- Hybrid PCA (HPCA) for region-referenced EEG data: uses the concept of weak separability for dimension reduction along regional and functional dimensions (Scheffler et al. 2020)
- Weak separability (weaker then strong seperability): assumes the direction of variation along one of the dimensions stays constant across slices of the other dimension
- Uses both vector and functional PCA
- Multilevel FPCA (M-FPCA) for multilevel functional data: functional ANOVA model (Di et al. 2009)
- Decomposes total variation in functional data into between- and within-subjects variation
- Assumes repetitions are exchangeable

M-HPCA algorithm for multilevel region-referenced functional EEG data

- Borrows ideas from HPCA and M-FPCA
- Decomposes total variation into between- $\left(K_{d, B}\right)$ and within-subjects $\left(K_{d, w}\right)$ variation
- Utilizes weak seperability on $K_{d, B}$ and $K_{d, W}$ for dimension reduction via product components
- Involves only one-dimensional PCA and FPCA (along regional and functional dimensions)

Proposed M-HPCA Algorithm

- Scores and variance components targeted within a mixed effects modeling framework
- Major computational challenge: Standard packages fail to scale up to the size of data considered
- M-HPCA addresses the computational challenge by coupling representation of the high-dimensional covariance matrices as weighted sums of lower dimensional building blocks, under the weak separability assumption, with an efficient minorization-maximization (MM) algorithm

Model

- $Y_{d i j}(r, t)$ denotes the functional observation for subject $i, i=1, \ldots, n_{d}$, from group $d, d=1, \ldots, D$, for repetition $j, j=1, \ldots, J$, in region r, $r=1, \ldots, R$, at time $t, t \in \mathcal{T}$ and is modeled as

$$
Y_{d i j}(r, t)=\mu(t)+\eta_{d j}(r, t)+Z_{d i}(r, t)+W_{d i j}(r, t)+\epsilon_{d i j}(r, t)
$$

- $\mu(t)$: overall mean function
- $\eta_{d j}(r, t)$: group-region-repetition-specific shift from the overall mean
- $Z_{d i}(r, t)$: subject-region-specific deviation
- $W_{\text {dij }}(r, t)$: subject-region-repetition deviation
- $\epsilon_{\text {dij }}(r, t)$: independent measurement error

Covariances

- Total covariance:

$$
K_{d, \text { Total }}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\}=\operatorname{cov}\left\{Y_{d i j}(r, t), Y_{d i j}\left(r^{\prime}, t^{\prime}\right)\right\}
$$

- Between-subject covariance:

$$
K_{d, B}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\}=\operatorname{cov}\left\{Y_{d i j_{1}}(r, t), Y_{d i j_{2}}\left(r^{\prime}, t^{\prime}\right)\right\}=\operatorname{cov}\left\{Z_{d i}(r, t), Z_{d i}\left(r^{\prime}, t^{\prime}\right)\right\}
$$

- Within-subject covariance

$$
\begin{aligned}
K_{d, w}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\} & :=K_{d, \text { Total }}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\}-K_{d, B}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\} \\
& =\operatorname{cov}\left\{W_{d i j}(r, t), W_{d i j}\left(r^{\prime}, t^{\prime}\right)\right\}
\end{aligned}
$$

Marginal covariances

- Functional marginal between and within covariance surfaces

$$
\begin{aligned}
& \Sigma_{d, \mathcal{T}, B}\left(t, t^{\prime}\right)=\sum_{r=1}^{R} K_{d, B}\left\{(r, t),\left(r, t^{\prime}\right)\right\}=\sum_{\ell=1}^{\infty} \tau_{d \ell, \mathcal{T}}^{(1)} \phi_{d \ell}^{(1)}(t) \phi_{d \ell}^{(1)}\left(t^{\prime}\right) \\
& \Sigma_{d, \mathcal{T}, w}\left(t, t^{\prime}\right)=\sum_{r=1}^{R} K_{d, w}\left\{(r, t),\left(r, t^{\prime}\right)\right\}=\sum_{m=1}^{\infty} \tau_{d m, \mathcal{T}}^{(2)} \phi_{d m}^{(2)}(t) \phi_{d m}^{(2)}\left(t^{\prime}\right),
\end{aligned}
$$

- Regional marginal between and within covariance matrices

$$
\begin{aligned}
& \left(\Sigma_{d, \mathcal{R}, B}\right)_{r, r^{\prime}}=\int_{\mathcal{T}} K_{d, B}\left\{(r, t),\left(r^{\prime}, t\right)\right\} d t=\sum_{k=1}^{R} \tau_{d k, \mathcal{R}}^{(1)} \mathrm{v}_{d k}^{(1)}(r) v_{d k}^{(1)}\left(r^{\prime}\right) \\
& \left(\Sigma_{d, \mathcal{R}, W}\right)_{r, r^{\prime}}=\int_{\mathcal{T}} K_{d, W}\left\{(r, t),\left(r^{\prime}, t\right)\right\} d t=\sum_{p=1}^{R} \tau_{d p, \mathcal{R}}^{(2)} v_{d p}^{(2)}(r) v_{d p}^{(2)}\left(r^{\prime}\right),
\end{aligned}
$$

- $\phi_{d \ell}^{(1)}(t)$ and $\phi_{d m}^{(2)}(t)$ are the level 1 and level 2 eigenfunctions, $v_{d k}^{(1)}(r)$ and $\mathrm{v}_{d p}^{(2)}(r)$ are the level 1 and level 2 eigenvectors, and $\tau_{d \ell, \mathcal{T}}^{(1)}, \tau_{d m, \mathcal{T}}^{(2)}$, $\tau_{d k, \mathcal{R}}^{(1)}$, and $\tau_{d p, \mathcal{R}}^{(2)}$ are the respective eigenvalues

M-HPCA decomposition

- Utilizing the marginal eigenfunctions and eigenvectors

$$
\begin{aligned}
Y_{d i j}(r, t)=\mu(t) & +\eta_{d j}(r, t)+Z_{d i}(r, t)+W_{d i j}(r, t)+\epsilon_{d i j}(r, t) \\
=\mu(t) & +\eta_{d j}(r, t)+\sum_{k=1}^{K} \sum_{\ell=1}^{L} \zeta_{d i, k \ell} v_{d k}^{(1)}(r) \phi_{d \ell}^{(1)}(t) \\
& +\sum_{p=1}^{P} \sum_{m=1}^{M} \xi_{d i j, p m} v_{d p}^{(2)}(r) \phi_{d m}^{(2)}(t)+\epsilon_{d i j}(r, t)
\end{aligned}
$$

- $\zeta_{d i, k \ell}=\left\langle Z_{d i}(r, t), v_{d k}^{(1)}(r) \phi_{d \ell}^{(1)}(t)\right\rangle, \xi_{d i j, p m}=\left\langle W_{d i j}(r, t), v_{d p}^{(2)}(r) \phi_{d m}^{(2)}(t)\right\rangle$
- Number of product components: level $1(G=K L)$, level $2(H=P M)$
- $\operatorname{var}\left(\zeta_{\text {dig }}\right)=\lambda_{d g}^{(1)}, \operatorname{var}\left(\xi_{\text {dijh }}\right)=\lambda_{d h}^{(2)}$

Mixed effects modeling to target scores + variance components

$$
\begin{gathered}
Y_{d i}=Z_{d i} \zeta_{d i}+W_{d i} \boldsymbol{\xi}_{d i}+\boldsymbol{\epsilon}_{d i} \text { for } i=1, \ldots, n_{d} \\
\zeta_{d i} \sim \operatorname{MVN}\left(0, \boldsymbol{\Lambda}_{d}^{(1)}\right), \boldsymbol{\xi}_{d i} \sim \operatorname{MVN}\left(0, I_{i} \otimes \boldsymbol{\Lambda}_{d}^{(2)}\right), \epsilon_{d i} \sim \operatorname{MVN}\left(0, \sigma_{d}^{2} I_{T R A}\right)
\end{gathered}
$$

- $Y_{d i} \sim \operatorname{MVN}\left(0, \boldsymbol{\Sigma}_{d i}\right)$, where $\boldsymbol{\Sigma}_{d i}=Z_{d i} \boldsymbol{\Lambda}_{d}^{(1)} z_{d i}^{T}+W_{d i}\left(I_{i} \otimes \boldsymbol{\Lambda}_{d}^{(2)}\right) W_{d i}^{T}+\sigma_{d T R / i}^{2} /$
- Log-likelihood: $\ell_{d}\left(\boldsymbol{\Lambda}_{d}^{(1)}, \boldsymbol{\Lambda}_{d}^{(2)}, \sigma_{d}^{2}\right)=-\frac{1}{2} \sum_{i=1}^{n_{d}} \log \operatorname{det} \boldsymbol{\Sigma}_{d i}+Y_{d i}^{T} \boldsymbol{\Sigma}_{d i}^{-1} Y_{d i}$
- Major computational challenge: $\boldsymbol{\Sigma}_{d i}$ is $T R J_{i} \times T R J_{i}$
- ABC-CT feasibility-study: $T=108, R=18, J=2 \Rightarrow T R J>3800$

MM Algorithm

- Minorizing function of log-likelihood:

$$
\begin{aligned}
\sum_{i=1}^{n_{d}} f_{d i} & \left(\boldsymbol{\Lambda}_{d}^{(1)}, \boldsymbol{\Lambda}_{d}^{(2)}, \sigma_{d}^{2} \mid \boldsymbol{\Lambda}_{d}^{(1)(c)}, \boldsymbol{\Lambda}_{d}^{(2)(c)}, \sigma_{d}^{2(c)}\right) \\
& =\sum_{i=1}^{n_{d}}-\frac{1}{2}\left[\operatorname{tr}\left(\boldsymbol{Z}_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-1(c)} \boldsymbol{Z}_{d i} \boldsymbol{\Lambda}_{d}^{(1)(c)}\right)+\boldsymbol{\zeta}_{d i}^{(c) \mathrm{T}} \boldsymbol{\Lambda}_{d}^{-(1)(c)} \boldsymbol{\zeta}_{d i}^{(c)}\right. \\
& +\operatorname{tr}\left\{W_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-1(c)} \boldsymbol{W}_{d i}\left(I_{J_{i}} \otimes \boldsymbol{\Lambda}_{d}^{(2)(c)}\right)\right\}+\boldsymbol{\xi}_{d i}^{(c) \mathrm{T}}\left(I_{J_{i}} \otimes \boldsymbol{\Lambda}_{d}^{-1(2)(c)}\right) \xi_{d i}^{(c)} \\
& \left.+\operatorname{tr}\left(\sigma_{d}^{2} \boldsymbol{\Sigma}_{d i}^{-1(c)}\right)+\frac{\sigma_{d}^{4(c)}}{\sigma_{d}^{2}} \boldsymbol{Y}_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-2(c)} \boldsymbol{Y}_{d i}\right]+q^{(c)}
\end{aligned}
$$

MM Algorithm

- Minorizing function of log-likelihood:

$$
\begin{aligned}
& \sum_{i=1}^{n_{d}} f_{d i}\left(\boldsymbol{\Lambda}_{d}^{(1)}, \boldsymbol{\Lambda}_{d}^{(2)}, \sigma_{d}^{2} \mid \boldsymbol{\Lambda}_{d}^{(1)(c)}, \boldsymbol{\Lambda}_{d}^{(2)(c)}, \sigma_{d}^{2(c)}\right) \\
& \quad=\sum_{i=1}^{n_{d}}-\frac{1}{2}\left[\operatorname{tr}\left(Z_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-1(c)} Z_{d i} \boldsymbol{\Lambda}_{d}^{(1)(c)}\right)+\zeta_{d i}^{(c) \mathrm{T}} \boldsymbol{\Lambda}_{d}^{-(1)(c)} \zeta_{d i}^{(c)}\right. \\
& \text { evel } \left.\left.1 \text { variance components } \otimes \boldsymbol{\Sigma}_{d}^{-1(c) \ldots(c)}\right)\right\}+\boldsymbol{\xi}_{d i}^{(c) \mathrm{T}}\left(I_{i} \otimes \boldsymbol{\Lambda}_{d}^{-1(2)(c)}\right) \xi_{d i}^{(c)} \\
& \left.\quad+\operatorname{tr}\left(\sigma_{d}^{2} \boldsymbol{\Sigma}_{d i}^{-1(c)}\right)+\frac{\sigma_{d}^{4(c)}}{\sigma_{d}^{2}} Y_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-2(c)} Y_{d i}\right]+q^{(c)}
\end{aligned}
$$

MM Algorithm

- Minorizing function of log-likelihood:

$$
\begin{aligned}
& \sum_{i=1}^{n_{d}} f_{d i}\left(\boldsymbol{\Lambda}_{d}^{(1)}, \mathbf{\Lambda}_{d}^{(2)}, \sigma_{d}^{2} \mid \boldsymbol{\Lambda}_{d}^{(1)(c)}, \boldsymbol{\Lambda}_{d}^{(2)(c)}, \sigma_{d}^{2(c)}\right) \\
& =\sum_{i=1}^{n_{d}}-\frac{1}{2}\left[\operatorname { t r } \left(Z_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-1\left(\varepsilon^{2} \mathcal{L}_{d i} \mathbf{N}_{d}\right)+\mathrm{S}_{d i} \mathbf{\Lambda}_{d} \boldsymbol{L}_{d i}}\right.\right. \\
& +\operatorname{tr}\left\{W_{d i}^{T} \boldsymbol{\Sigma}_{d i}^{-1(c)} W_{d i}\left(I_{J_{i}} \otimes \Lambda_{d}^{(2)(c)}\right)\right\}+\xi_{d i}^{(c) T}\left(I_{j i} \otimes \Lambda_{d}^{-1(2)(c)}\right) \xi_{d i}^{(c)} \\
& \left.+\operatorname{tr}\left(\sigma_{d}^{2} \boldsymbol{\Sigma}_{d i}^{-1(c)}\right)+\frac{\sigma_{d}^{4(c)}}{\sigma_{d}^{2}} Y_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-2(c)} Y_{d i}\right]+q^{(c)}
\end{aligned}
$$

MM Algorithm

- Minorizing function of log-likelihood:

$$
\begin{aligned}
& \sum_{i=1}^{n_{d}} f_{d i}\left(\boldsymbol{\Lambda}_{d}^{(1)}, \boldsymbol{\Lambda}_{d}^{(2)}, \sigma_{d}^{2} \mid \boldsymbol{\Lambda}_{d}^{(1)(c)}, \mathbf{\Lambda}_{d}^{(2)(c)}, \sigma_{d}^{2(c)}\right) \\
& \quad=\sum_{i=1}^{n_{d}}-\frac{1}{2}\left[\operatorname{tr}\left(Z_{d i}^{T} \boldsymbol{\Sigma}_{d i}^{-1(c)} \boldsymbol{Z}_{d i} \boldsymbol{\Lambda}_{d}^{(1)(c)}\right)+\boldsymbol{\zeta}_{d i}^{(c) T} \boldsymbol{\Lambda}_{d}^{-(1)(c)} \boldsymbol{\zeta}_{d i}^{(c)}\right. \\
& \quad+\operatorname{tr}\left\{\boldsymbol{W}_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-1(c)} \boldsymbol{W}_{d i}\left(\boldsymbol{I}_{j i} \otimes \boldsymbol{\Lambda}_{d}^{(2)(c)}\right)\right\}+\boldsymbol{\xi}_{d i}^{(c) \mathrm{T}}\left(\boldsymbol{I}_{j} \otimes \boldsymbol{\Lambda}_{d}^{-1(2)(c)}\right) \xi_{d i}^{(c)} \\
& \left.\quad+\operatorname{tr}\left(\sigma_{d}^{2} \boldsymbol{\Sigma}_{d i}^{-1(c)}\right)+\frac{\sigma_{d}^{4(c)}}{\sigma_{d}^{2}} Y_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-2(c)} Y_{d i}\right]+q^{(c)} \\
& \text { Measurement error variance component }
\end{aligned}
$$

MM Algorithm

- Minorizing function of log-likelihood:

$$
\begin{aligned}
\sum_{i=1}^{n_{d}} f_{d i} & \left(\boldsymbol{\Lambda}_{d}^{(1)}, \boldsymbol{\Lambda}_{d}^{(2)}, \sigma_{d}^{2} \mid \boldsymbol{\Lambda}_{d}^{(1)(c)}, \boldsymbol{\Lambda}_{d}^{(2)(c)}, \sigma_{d}^{2(c)}\right) \\
& =\sum_{i=1}^{n_{d}}-\frac{1}{2}\left[\operatorname{tr}\left(Z_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-1(c)} \boldsymbol{Z}_{d i} \boldsymbol{\Lambda}_{d}^{(1)(c)}\right)+\boldsymbol{\zeta}_{d i}^{(c) \mathrm{T}} \boldsymbol{\Lambda}_{d}^{-(1)(c)} \boldsymbol{\zeta}_{d i}^{(c)}\right. \\
& +\operatorname{tr}\left\{W_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-1(c)} W_{d i}\left(I_{J_{i}} \otimes \boldsymbol{\Lambda}_{d}^{(2)(c)}\right)\right\}+\boldsymbol{\xi}_{d i}^{(c) \mathrm{T}}\left(I_{J_{i}} \otimes \boldsymbol{\Lambda}_{d}^{-1(2)(c)}\right) \xi_{d i}^{(c)} \\
& \left.+\operatorname{tr}\left(\sigma_{d}^{2} \boldsymbol{\Sigma}_{d i}^{-1(c)}\right)+\frac{\sigma_{d}^{4(c)}}{\sigma_{d}^{2}} \boldsymbol{Y}_{d i}^{\mathrm{T}} \boldsymbol{\Sigma}_{d i}^{-2(c)} \boldsymbol{Y}_{d i}\right]+q^{(c)}
\end{aligned}
$$

- Variance components separated \Rightarrow derivatives are easy!

MM algorithm and computational savings

- Minorization function is much easier to maximize with respect to the variance components, due to the additive structure
- Taking advantage of weak separability, the high-dimensional covariance matrices are represented as weighted sums of lower dimensional building blocks
- Instead of inverting $T R J_{i} \times T R J_{i}$ covariance matrix, $\boldsymbol{\Sigma}_{d i}$, we only invert matrices of size $G \times G$ and $H \times H$

M-HPCA ICC and inference via parametric bootstrap

- Compare the variability explained at each level of the data (subject vs. repetition) across the functional and regional dimensions

$$
\widehat{\rho}_{d W}=\frac{\sum_{g=1}^{G} \widehat{\lambda}_{d g}^{(1)}}{\sum_{g=1}^{G} \widehat{\lambda}_{d g}^{(1)}+\sum_{h=1}^{H} \widehat{\lambda}_{d h}^{(2)}}
$$

- High M-HPCA ICC \Rightarrow more of the total variation is explained by heterogeneity at the subject level, implying repeatedly observed region-referenced functional data are similar within subjects
- Inference via parametric bootstrap is proposed using estimated variance components and the low dimensional representation provided by M-HPCA

Day-to-day test-retest reliability of PSD

- Study cohort: 47 children aged 5-11 years old (25 TD, 22 ASD)

- Multilevel: Participants were shown screensaver-like videos on two separate days, a median of 6 days apart
- Region-referenced: 18 electrodes
- Functional: PSD

Marginal eigenvectors

- Leading eigenvector explains most of the variation across both groups and levels and signals constant variation across the scalp

Marginal eigenfunctions

(c)

First Day-Level Eigenfunctions

(d)

Marginal eigenfunctions

- Leading participant-level eigenfunctions: most of the variation across subjects is observed in the alpha peak amplitude in both groups
- Second leading participant-level eigenfunction signals variation in location of the dominant peak across subjects (TD: low and high alpha, ASD: high alpha to beta)
- Leading day-level eigenfunctions: variation across days is in the dominant peak location within alpha to beta bands in ASD, within theta to alpha in TD
- Second leading day-level eigenfunctions signal peak alpha amplitude variation in both groups

M-HPCA ICC

$$
\widehat{\rho}_{d W}=\frac{\sum_{g=1}^{G} \widehat{\lambda}_{d g}^{(1)}}{\sum_{g=1}^{G} \widehat{\lambda}_{d g}^{(1)}+\sum_{h=1}^{H} \widehat{\lambda}_{d h}^{(2)}}
$$

- Estimated to be 0.673 [$95 \% \mathrm{Cl}(0.626,0.793)]$ for ASD and 0.656 for TD [95\% CI (0.639, 0.776)]
- Signals moderate agreement in within subject day-to-day PSD, where most of the variation is explained at the subject level
- Results consistent with findings of Levin et al. (2020) who reported moderate aggreement for scalp averaged PSDs across days within subjects
- M-HPCA models EEG data in its full complexity, including the functional and regional features as well as the repeated observations over experimental conditions or visits
- Both time and the frequency domains are targeted under the umbrella of multilevel region-referenced functional data
- Computationally efficient MM algorithm that is specifically designed to take advantage of the lower dimensional representation provided by M-HPCA
- Major savings in computational time as the number of product components increase: 100 fold savings over Ime4 at 16 product components

Thank you!

R package available at github.com/emjcampos/mhpca
Manuscript available at doi/10.1002/sim. 9445

References

- Levin AR, Naples AJ, Scheffler AW, et al. Day-to-Day Test-Retest Reliability of EEG Profiles in Children With Autism Spectrum Disorder and Typical Development. Frontiers in Integrative Neuroscience 2020; 14(April): 1-12. doi: 10.3389/fnint.2020.00021

Covariances

- Total covariance:

$$
K_{d, \text { Total }}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\}=\operatorname{cov}\left\{Y_{d i j}(r, t), Y_{d i j}\left(r^{\prime}, t^{\prime}\right)\right\}
$$

- Between-subject covariance:

$$
K_{d, B}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\}=\operatorname{cov}\left\{Y_{d i j_{1}}(r, t), Y_{d i j_{2}}\left(r^{\prime}, t^{\prime}\right)\right\}=\operatorname{cov}\left\{Z_{d i}(r, t), Z_{d i}\left(r^{\prime}, t^{\prime}\right)\right\}
$$

- Within-subject covariance

$$
\begin{aligned}
K_{d, w}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\} & :=K_{d, \text { Total }}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\}-K_{d, B}\left\{(r, t),\left(r^{\prime}, t^{\prime}\right)\right\} \\
& =\operatorname{cov}\left\{W_{d i j}(r, t), W_{d i j}\left(r^{\prime}, t^{\prime}\right)\right\}
\end{aligned}
$$

Marginal covariances

- Functional marginal between and within covariance surfaces

$$
\begin{aligned}
& \Sigma_{d, \mathcal{T}, B}\left(t, t^{\prime}\right)=\sum_{r=1}^{R} K_{d, B}\left\{(r, t),\left(r, t^{\prime}\right)\right\}=\sum_{\ell=1}^{\infty} \tau_{d \ell, \mathcal{T}}^{(1)} \phi_{d \ell}^{(1)}(t) \phi_{d \ell}^{(1)}\left(t^{\prime}\right) \\
& \Sigma_{d, \mathcal{T}, w}\left(t, t^{\prime}\right)=\sum_{r=1}^{R} K_{d, w}\left\{(r, t),\left(r, t^{\prime}\right)\right\}=\sum_{m=1}^{\infty} \tau_{d m, \mathcal{T}}^{(2)} \phi_{d m}^{(2)}(t) \phi_{d m}^{(2)}\left(t^{\prime}\right),
\end{aligned}
$$

- Regional marginal between and within covariance matrices

$$
\begin{aligned}
& \left(\Sigma_{d, \mathcal{R}, B}\right)_{r, r^{\prime}}=\int_{\mathcal{T}} K_{d, B}\left\{(r, t),\left(r^{\prime}, t\right)\right\} d t=\sum_{k=1}^{R} \tau_{d k, \mathcal{R}}^{(1)} \mathrm{v}_{d k}^{(1)}(r) v_{d k}^{(1)}\left(r^{\prime}\right) \\
& \left(\Sigma_{d, \mathcal{R}, W}\right)_{r, r^{\prime}}=\int_{\mathcal{T}} K_{d, W}\left\{(r, t),\left(r^{\prime}, t\right)\right\} d t=\sum_{p=1}^{R} \tau_{d p, \mathcal{R}}^{(2)} v_{d p}^{(2)}(r) v_{d p}^{(2)}\left(r^{\prime}\right),
\end{aligned}
$$

- $\phi_{d \ell}^{(1)}(t)$ and $\phi_{d m}^{(2)}(t)$ are the level 1 and level 2 eigenfunctions, $v_{d k}^{(1)}(r)$ and $\mathrm{v}_{d p}^{(2)}(r)$ are the level 1 and level 2 eigenvectors, and $\tau_{d \ell, \mathcal{T}}^{(1)}, \tau_{d m, \mathcal{T}}^{(2)}$, $\tau_{d k, \mathcal{R}}^{(1)}$, and $\tau_{d p, \mathcal{R}}^{(2)}$ are the respective eigenvalues

