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Application to Autism Spectrum Disorder (ASD)

• ASD: developmental disorder that affects communication and
behavior

• Resting state: Feasibility study of Autism Biomarkers Consortium for
Clinical Trials (ABC-CT) (McPartland et al. 2020; Levin et al. 2020)

• Goal: study the day-to-day test-retest reliability of power spectral
density (PSD)
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Resting state EEG: Day-to-day test-retest reliability of PSD

• Study cohort: 47 children aged 5-11 years old (25 TD, 22 ASD)

• Multilevel: Participants were shown screensaver-like videos on two
separate days, a median of 6 days apart

• Region-referenced: 18 electrodes

• Functional: PSD
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Multilevel region-referenced functional EEG data

• Generated data viewed as functional objects collected across the
scalp across varying experimental conditions within a single
longitudinal visit or across multiple visits

• Common analysis of EEG reduces the data complexity by collapsing
one of the dimensions

• Functional: average power within a specified frequency band
• Regional: analysis in pre-determined scalp region (or a scalp average)
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Current methods for high-dimensional functional data

• Hybrid PCA (HPCA) for region-referenced EEG data: uses the concept
of weak separability for dimension reduction along regional and
functional dimensions (Scheffler et al. 2020)

• Weak separability (weaker then strong seperability): assumes the
direction of variation along one of the dimensions stays constant
across slices of the other dimension

• Uses both vector and functional PCA

• Multilevel FPCA (M-FPCA) for multilevel functional data: functional
ANOVA model (Di et al. 2009)

• Decomposes total variation in functional data into between- and
within-subjects variation

• Assumes repetitions are exchangeable
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M-HPCA algorithm for multilevel region-referenced functional
EEG data

• Borrows ideas from HPCA and M-FPCA

• Decomposes total variation into between- (Kd,B) and within-subjects
(Kd,W) variation

• Utilizes weak seperability on Kd,B and Kd,W for dimension reduction
via product components

• Involves only one-dimensional PCA and FPCA (along regional and
functional dimensions)
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Proposed M-HPCA Algorithm

• Scores and variance components targeted within a mixed effects
modeling framework

• Major computational challenge: Standard packages fail to scale up
to the size of data considered

• M-HPCA addresses the computational challenge by coupling
representation of the high-dimensional covariance matrices as
weighted sums of lower dimensional building blocks, under the weak
separability assumption, with an efficient minorization-maximization
(MM) algorithm
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Model

• Ydij(r, t) denotes the functional observation for subject i, i = 1, . . . ,nd,
from group d, d = 1, . . . ,D, for repetition j, j = 1, . . . , J, in region r,
r = 1, . . . ,R, at time t, t ∈ T and is modeled as

Ydij(r, t) = µ(t) + ηdj(r, t) + Zdi(r, t) +Wdij(r, t) + ϵdij(r, t)

• µ(t): overall mean function

• ηdj(r, t): group-region-repetition-specific shift from the overall mean

• Zdi(r, t): subject-region-specific deviation

• Wdij(r, t): subject-region-repetition deviation

• ϵdij(r, t): independent measurement error

7



Covariances

• Total covariance:

Kd,Total{(r, t), (r′, t′)} = cov{Ydij(r, t), Ydij(r′, t′)}

• Between-subject covariance:

Kd,B{(r, t), (r′, t′)} = cov{Ydij1(r, t), Ydij2(r′, t′)} = cov{Zdi(r, t), Zdi(r′, t′)}

• Within-subject covariance

Kd,W{(r, t), (r′, t′)} := Kd,Total{(r, t), (r′, t′)} − Kd,B{(r, t), (r′, t′)}
= cov{Wdij(r, t),Wdij(r′, t′)}
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Marginal covariances

• Functional marginal between and within covariance surfaces

Σd,T ,B(t, t′) =
R∑
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∞∑
ℓ=1

τ
(1)
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(1)
dℓ (t

′)
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τ
(2)
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(2)
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• Regional marginal between and within covariance matrices

(Σd,R,B)r,r′ =

∫
T
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(1)
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• ϕ
(1)
dℓ (t) and ϕ

(2)
dm(t) are the level 1 and level 2 eigenfunctions, v(1)dk (r)

and v(2)dp (r) are the level 1 and level 2 eigenvectors, and τ
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τ
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M-HPCA decomposition

• Utilizing the marginal eigenfunctions and eigenvectors

Ydij(r, t) = µ(t) + ηdj(r, t) + Zdi(r, t) +Wdij(r, t) + ϵdij(r, t)

= µ(t) + ηdj(r, t) +
K∑

k=1

L∑
ℓ=1

ζdi,kℓv(1)dk (r)ϕ
(1)
dℓ (t)

+
P∑

p=1

M∑
m=1

ξdij,pmv(2)dp (r)ϕ
(2)
dm(t) + ϵdij(r, t)

• ζdi,kℓ = ⟨Zdi(r, t), v(1)dk (r)ϕ
(1)
dℓ (t)⟩, ξdij,pm = ⟨Wdij(r, t), v(2)dp (r)ϕ

(2)
dm(t)⟩

• Number of product components: level 1 (G = KL), level 2 (H = PM)

• var(ζdig) = λ
(1)
dg , var(ξdijh) = λ

(2)
dh
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Mixed effects modeling to target scores + variance components

Ydi = Zdiζdi +Wdiξdi + ϵdi for i = 1, . . . ,nd

ζdi ∼ MVN
(
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d

)
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(
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d

)
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• Ydi ∼ MVN (0,Σdi), where Σdi = ZdiΛ(1)
d ZT
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(
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d
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WT
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• Log-likelihood: ℓd
(
Λ
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d

)
= − 1

2
∑nd

i=1 log detΣdi + YT
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−1
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• Major computational challenge: Σdi is TRJi × TRJi

• ABC-CT feasibility-study: T = 108, R = 18, J = 2 ⇒ TRJ > 3800
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MM Algorithm

• Minorizing function of log-likelihood:
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• Variance components separated ⇒ derivatives are easy!

Level 1 variance components

Level 2 variance components

Measurement error variance component
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MM algorithm and computational savings

• Minorization function is much easier to maximize with respect to the
variance components, due to the additive structure

• Taking advantage of weak separability, the high-dimensional
covariance matrices are represented as weighted sums of lower
dimensional building blocks

• Instead of inverting TRJi × TRJi covariance matrix, Σdi, we only invert
matrices of size G× G and H× H

13



M-HPCA ICC and inference via parametric bootstrap

• Compare the variability explained at each level of the data (subject
vs. repetition) across the functional and regional dimensions

ρ̂dW =

∑G
g=1 λ̂

(1)
dg∑G

g=1 λ̂
(1)
dg +

∑H
h=1 λ̂

(2)
dh

• High M-HPCA ICC ⇒ more of the total variation is explained by
heterogeneity at the subject level, implying repeatedly observed
region-referenced functional data are similar within subjects

• Inference via parametric bootstrap is proposed using estimated
variance components and the low dimensional representation
provided by M-HPCA
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Day-to-day test-retest reliability of PSD

• Study cohort: 47 children aged 5-11 years old (25 TD, 22 ASD)

• Multilevel: Participants were shown screensaver-like videos on two
separate days, a median of 6 days apart

• Region-referenced: 18 electrodes

• Functional: PSD
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Marginal eigenvectors

• Leading eigenvector explains most of the variation across both
groups and levels and signals constant variation across the scalp
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Marginal eigenfunctions
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Marginal eigenfunctions

• Leading participant-level eigenfunctions: most of the variation
across subjects is observed in the alpha peak amplitude in both
groups

• Second leading participant-level eigenfunction signals variation in
location of the dominant peak across subjects (TD: low and high
alpha, ASD: high alpha to beta)

• Leading day-level eigenfunctions: variation across days is in the
dominant peak location within alpha to beta bands in ASD, within
theta to alpha in TD

• Second leading day-level eigenfunctions signal peak alpha
amplitude variation in both groups
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M-HPCA ICC

ρ̂dW =

∑G
g=1 λ̂

(1)
dg∑G

g=1 λ̂
(1)
dg +

∑H
h=1 λ̂

(2)
dh

• Estimated to be 0.673 [95% CI (0.626, 0.793)] for ASD and 0.656 for TD
[95% CI (0.639, 0.776)]

• Signals moderate agreement in within subject day-to-day PSD, where
most of the variation is explained at the subject level

• Results consistent with findings of Levin et al. (2020) who reported
moderate aggreement for scalp averaged PSDs across days within
subjects
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• M-HPCA models EEG data in its full complexity, including the
functional and regional features as well as the repeated
observations over experimental conditions or visits

• Both time and the frequency domains are targeted under the
umbrella of multilevel region-referenced functional data

• Computationally efficient MM algorithm that is specifically designed
to take advantage of the lower dimensional representation provided
by M-HPCA

• Major savings in computational time as the number of product
components increase: 100 fold savings over lme4 at 16 product
components
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Thank you!
R package available at github.com/emjcampos/mhpca

Manuscript available at doi/10.1002/sim.9445
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Covariances

• Total covariance:

Kd,Total{(r, t), (r′, t′)} = cov{Ydij(r, t), Ydij(r′, t′)}

• Between-subject covariance:

Kd,B{(r, t), (r′, t′)} = cov{Ydij1(r, t), Ydij2(r′, t′)} = cov{Zdi(r, t), Zdi(r′, t′)}

• Within-subject covariance

Kd,W{(r, t), (r′, t′)} := Kd,Total{(r, t), (r′, t′)} − Kd,B{(r, t), (r′, t′)}
= cov{Wdij(r, t),Wdij(r′, t′)}



Marginal covariances

• Functional marginal between and within covariance surfaces
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∞∑
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• Regional marginal between and within covariance matrices
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∫
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R∑
k=1

τ
(1)
dk,Rv(1)dk (r)v

(1)
dk (r

′)

(Σd,R,W)r,r′ =

∫
T
Kd,W{(r, t), (r′, t)}dt =

R∑
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dp,R are the respective eigenvalues
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